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Abstract— Practical industrial assembly scenarios often re-
quire robotic agents to adapt their skills to unseen tasks quickly.
While transfer reinforcement learning (RL) could enable such
quick adaptation, much prior work has to collect many samples
from source environments to learn target tasks in a model-free
fashion, which still lacks sample efficiency on a practical level.
In this work, we develop a novel transfer RL method named
TRANSfer learning by Aggregating dynamics Models (TRANS-
AM). TRANS-AM is based on model-based RL (MBRL) for
its high-level sample efficiency, and only requires dynamics
models to be collected from source environments. Specifically,
it learns to aggregate source dynamics models adaptively in
an MBRL loop to better fit the state-transition dynamics of
target environments and execute optimal actions there. As a
case study to show the effectiveness of this proposed approach,
we address a challenging contact-rich peg-in-hole task with
variable hole orientations using a soft robot. Our evaluations
with both simulation and real-robot experiments demonstrate
that TRANS-AM enables the soft robot to accomplish target
tasks with fewer episodes compared when learning the tasks
from scratch.

I. INTRODUCTION

Industrial robots at factory lines perform a variety of
contact-rich manipulation tasks, such as stacking a piece of
items onto a base and inserting a peg into a hole. In practical
scenarios, it is also critical for such robots to get adapted to a
new environmental setup quickly, e.g., when launching a new
factory line where robots are installed in different ways or ac-
commodating the robots in existing lines to a new workpiece
with different physical characteristics. While reinforcement
learning (RL) could allow robots to acquire manipulation
skills automatically [1], quick adaptation of learned skills to
new environmental setups is still challenging as such skills
are often specific to the environmental configurations where
the learning is performed [2], [3].

The scenarios above can be viewed as a problem of
transfer RL that aims to quickly learn a new target task
by leveraging information acquired from source environ-
ments [4]. Particularly in this work, we consider the problem
setting where 1) source and target environments are the same
task but different in their state-transition dynamics, 2) exact

1Kazutoshi Tanaka, Ryo Yonetani, Masashi Hamaya, Robert Lee, Felix
von Drigalski, and Yoshihisa Ijiri are with OMRON SINIC X Corporation,
Hongo 5-24-5, Bunkyo-ku, Tokyo, Japan { kazutoshi.tanaka,
ryo.yonetani, f.drigalski, masashi.hamaya,
robert.lee, yoshihisa.ijiri }@sinicx.com

*This work was supported by JSPS KAKENHI Grant Numbers
JP19K14936.

Source environments Target environment

Transfer

Fig. 1. Motivating example. We address a problem of transferring robotic
peg-in-hole skills between different hole orientations, which is formulated
as transfer RL between different state-transition dynamics.

dynamics of the environments are unknown, and 3) the com-
munication with the source environments is prohibited when
learning in the target environment. As a motivating example,
Figure 1 shows a series of robotic peg-in-hole tasks with
variable hole orientations, which often appear in practical
situations (e.g., [5]). While the peg is in contact with the
hole, even a small difference in hole orientations has a great
influence on robot’s state transitions (i.e., the same action
commands result in different poses or positions of the peg),
which requires a unique strategy for peg insertion. Moreover,
a full specification of state-transition dynamics parameters is
not typically available due to unknown, inaccurate, or time-
varying robot dynamics, such as link mass, joint dumping,
friction, and inertia [2]. Finally, poor communication chan-
nels among distributed factory lines can prevent each robot
from interacting with other robots to collect information on
a large scale [3].

While much work has been done to enable inter-dynamics
transfer [2], [4], [6]–[8], most of them require to collect
thousands of samples from source environments to take
into account their state-transition dynamics. Other relevant
work adopted a meta-learning approach for quickly learning
target tasks under unknown dynamics [9]–[11]. However,
they typically assume robots to be trained on a diverse set
of source tasks in advance. Either way, these approaches are
not easily applicable to our problem setting as long as they



require frequent access to source environments.
On the other hand, recent studies have proposed to utilize

policies acquired from source environments [3], [12]. These
approaches do not require source samples and can work
even when source state-transition dynamics are unknown.
Nevertheless, they are based on model-free RL and necessi-
tate many interactions at target environments. We argue that
this is inefficient and undesirable, especially for contact-rich
manipulation tasks at factories, as conducting many trials
for sample collection not only leads to long delays until
deployment but can also damage the robots and workpieces.

Based on the above background, we develop a new trans-
fer RL method called TRANSfer learning by Aggregating
dynamics Models (TRANS-AM). To achieve high sample
efficiency, our method adopts a model-based RL (MBRL)
approach that allows agents to select optimal actions by
learning a model of state-transition dynamics of a given envi-
ronment. Our key idea is then to collect and utilize a collec-
tion of dynamics models acquired from source environments
(i.e., source dynamics models) for learning a state-transition
dynamics of the target environment, rather than collecting
source samples or policies that existing model-free transfer
RL used. As illustrated in Figure 2, each source dynamics
model approximates unknown state-transition dynamics as a
black-box function, and is used in TRANS-AM as follows:
• TRANS-AM learns to adaptively aggregate outputs

from multiple source dynamics models in an MBRL
loop. Doing so allows it to flexibly interpolate or
extrapolate source models to approximate target state-
transition dynamics without knowing exact dynamics
parameters of each environment.

• Moreover, TRANS-AM learns an auxiliary model
jointly with adaptive aggregation to enable the predic-
tion of residuals around aggregated outputs. As with
the auxiliary policies used in model-free RL [3], [12],
our auxiliary model can ensure the expressiveness of
the resulting target dynamics model — a necessary trait
particularly when there is a substantial gap between the
source and target state-transition dynamics.

As a practical scenario, we address a robotic assembly,
more specifically a challenging peg-in-hole task with variable
hole orientations using a robotic arm with a soft wrist con-
necting the end of the arm to the gripper with springs [13].
Although recent work has revealed the effectiveness of soft
robots for contact-rich manipulation, learning their complex
dynamics in MBRL is still challenging and has been done
independently for every single task [14]. Through extensive
simulation and real-robot experiments, we confirmed that the
proposed TRANS-AM enabled soft robots to accomplish a
target task in a shorter time by utilizing dynamics models ac-
quired in source environments, compared to when conducting
MBRL in the target environment from scratch.

II. RELATED WORK

A. Learning for robotic assembly
Our work is aimed at accomplishing robotic manipula-

tion tasks for practical industrial assembly scenarios, where
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Fig. 2. TRANS-AM framework. Our model-based transfer RL approach
adaptively aggregates dynamics models acquired from source environments
to approximate target state-transition dynamics. Trainable parameters (θaux
and θagg) are highlighted in orange.

the efficiency of doing so in unseen environmental setups
is a critical factor. Much work has proposed RL-based
frameworks to learn optimal assembly strategies [15]. In
particular, we are interested in model-based approaches (i.e.,
MBRL), as they are sample efficient and shown effective
for a variety of assembly tasks [1], [16]–[19]. Recent work
has leveraged deep neural networks to deal with complex
dynamics [20]–[22]. However, they tend to overfit on small
samples compared to when using simpler models [21], such
as ones based on Gaussian process [23], [24].

A promising direction to make learning sample efficient
is to leverage knowledge acquired from other (source) tasks
relevant to the target one. This motivation is often found in
the literature of transfer RL. As summarized in [4], transfer
RL methods can be categorized based on how source and tar-
get environments are different (e.g., reward functions, state-
transition dynamics, or state/action spaces) and what are
transferred (e.g., policies, Q functions, or dynamics models).
Among much work done so far, attempts on transfer between
different state-transition dynamics are relatively limited [2],
[3], [6]–[8], [12]. More critically, they are all model-free and
not applicable to MBRL used in our proposed approach.

Another relevant domain is meta learning, which has
recently been studied actively to enable robotic agents to
quickly adapt unknown tasks [9], [10], [25]–[27]. As dis-
cussed in the previous section, meta-RL approaches are
not always useful for practical industrial assembly scenarios
where robots in factories are not necessarily kept accessible
to a variety of different environments. On the other hand, our
proposed approach can work by receiving dynamics models
from several other relevant environments only once.

B. Soft robotics

As a case study to show the effectiveness of our approach,
we are interested in using soft robots [28] for industrial
assembly. The physical softness allows a robot to compensate
for positional error when being controlled, by deforming
their body while contacting objects. Such soft robots have



been realized in a variety of forms, with compliant grip-
pers [29], [30], wrists [31], [32], and arms [33], [34].

Nevertheless, the complexity of soft robotic bodies makes
it hard to design controllers manually [35] and required data-
driven approaches [36]–[38]. Most recently, MBRL has been
used to learn soft-robotic control tasks [14], [39]. Our study
extends this line of research and proposes a transfer RL
method that works effectively for sample efficiency even
when state-transition dynamics are complex and unknown
due to the softness of robotic arms.

III. TRANS-AM: TRANSFER LEARNING BY
AGGREGATING DYNAMICS MODELS

A. Preliminaries

1) Markov decision process: We formulate our problem as
a standard RL problem [40]. Specifically, contact-rich robotic
manipulation tasks are modeled using the Markov decision
process (MDP) with tuple M = 〈S,A, T,R〉, where S and
A respectively denote the state and action spaces, T : S ×
A → S is a function representing state-transition dynamics,
and R : S ×A → R is a reward function. At each time step
t, the agent in state st ∈ S executes an action at ∈ A to
receive reward R(st,at). The state is then transitioned to the
next one, st+1 = T (st,at). For contact-rich manipulation
tasks, each state can involve positions and orientations of the
end-effector or those of parts being grasped, whereas actions
can be implemented as continuous commands to control the
velocity of the arm tip. The reward function R quantifies
how effective the current state is at accomplishing a given
task. More specific configurations for our experiments are
presented in Sections IV and V.

2) Model-based reinforcement learning: The goal of RL
is to obtain the optimal controller that can execute a sequence
of actions to maximize the return (i.e., total reward accu-
mulated over time). In this work, we adopt MBRL for its
excellent sample efficiency. Specifically, we learn a model
that approximates the state-transition dynamics T using
samples collected from real dynamics, which we denote
by g(st,at; θ) parameterized by θ. The learned model is
then used to generate a distribution of state trajectories by
applying sequences of actions, and select optimal actions
based on the return computed for each generated trajectory.

3) Transfer learning between different dynamics: In this
work, we focus on a transfer RL setting where the source and
target environments have unknown different state-transition
dynamics. Specifically, consider K relevant source environ-
ments that are each characterized by a distinct dynamics
model gk : S × A → S (k = 1, . . . ,K) mapping a
given state-action pair to different states. Crucially, similar
to the setting of [3], [12], these models may or may not be
parameterized and trainable (e.g., learned neural networks
or hand-engineered simulators with heuristic rules that ap-
proximate a real system) and regarded as a fixed black-box
function with no trainable parameters. Then, for a new target
environment with unknown state-transition dynamics, our
goal in this work is to quickly learn a model gtarget(st,at; θ)

by leveraging a collection of source dynamics models G =
{gk}Kk=1 to further improve the sample efficiency of MBRL.

B. Adaptive aggregation of multiple dynamics models

As illustrated in Figure 2, the proposed TRANS-AM
learns a model of target state-transition dynamics by: a)
adaptively aggregating the outputs from source dynamics
models while b) jointly learning an auxiliary model to
predict the residual around the aggregation results. Formally,
for a set of source dynamics models G = {gk}Kk=1, the
output s(k)t+1 = gk(st,at) from a certain state-action pair
is concatenated as follows1:

St+1 =
[
(s

(1)
t+1)

>, . . . , (s
(K)
t+1)

>
]
∈ RK×D, (1)

where D is the dimension of state space S. We denote
the auxiliary model parameterized by θaux as gaux(θaux) :
S × A → S . Any function that is fully differentiable and
accepts the same state and action spaces can be used to rep-
resent gaux. Then, for a new target environment, the source
models and the auxiliary model are aggregated adaptively to
represent a target dynamics model gtarget as follows:

st+1 ≈ gtarget(st,at; θ = (θagg, θaux)) (2)
= 1>

(
θagg �

[
St+1, gaux(st,at; θaux)

>]) ,(3)

where θagg ∈ R(K+1)×D is a matrix of trainable aggregation
weight parameters, � denotes element-wise multiplication,
and 1 is the all-ones column vector of size K + 1. Note
that the matrix θagg is not particularly regularized. This
enables the flexible aggregation of outputs from each model,
which was shown in previous work on model-free transfer
RL to be advantageous when accurate specifications of
dynamics are not available for both of the source and target
environments [3].

C. Learning algorithm

As indicated in Eq. (2), TRANS-AM characterizes a
dynamics model of target environments using a set of pa-
rameters θ = (θagg, θaux). These parameters can be trained
in arbitrary MBRL algorithms that directly update the model
via back-propagation. Inspired by [21], we adopt the model-
predictive control (MPC) through the use of the cross-entropy
method (CEM) [41] with trajectory sampling.

IV. SIMULATION EXPERIMENT

Keeping in mind that our original focus is a contact-
rich manipulation task for industrial robots, we evaluate
the effectiveness of the proposed TRANS-AM method on a
challenging soft robot assembly task. While physical softness
of robotic arms makes contact-rich manipulation easy and
safe, it also comes with difficulty in learning dynamics for
MBRL. To this end, we first conduct a systematic evaluation
using an extensive simulation experiment on soft-robotic
peg-in-hole tasks with variable hole orientations.
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Fig. 3. Soft-robotic peg-in-hole simulation. Each pane shows a different
environmental setting involving variations in hole orientations.

A. Simulation setup

We implemented a 2D simulation of soft-robotic peg-in-
hole environments using the Box2D physics engine [42]. As
shown in Figure 3, the simulated robotic arm consists of a
wrist and a gripper with a peg attached, which are connected
with eight springs to realize physical softness. The state of
the arm is defined as st = [p>wrs, p

>
btm, p

>
grp, p

>
peg]
>, where

pwrs and pgrp are the centroid of the wrist and the grip-
per, respectively, and pbtm and ppeg are the bottom-center
locations of the wrist and the peg, respectively. The action
is described by at = [vX , vY , ω]

> that are respectively the
horizontal, vertical, and angular velocities of the wrist. We
give a reward function R based on the distance between the
peg and the hole on a surface, where the task was regarded as
successful when the distance fell within a specific threshold.
With this simulation environment, we created a collection of
seven environment instances with distinct hole orientations
φ ∈ {−0.9,−0.6,−0.3, 0.0, 0.3, 0.6, 0.9} (rad) and random
initial arm positions. In this way, each environment instance
was characterized by distinct state-transition dynamics be-
cause the same action commands result in different next
states while the peg is in contact with the hole.

B. Implementation details

1) Source dynamics models: For each environment in-
stance, we trained an ensemble of standard three-layer multi-
layer perception (MLP) models with batch normalization and
ReLU activation (except the last layer activated linearly),
and used it as a source dynamics model2 gk. The model
was trained using an Adam optimizer with a learning rate
of 0.001. As introduced in Section III, we adopted CEM-
based MPC to determine optimal next actions via MBRL.
The prediction horizon of MPC was set to three steps and the
number of generated state trajectories was set to 300, from
which we chose the 100 best action sequences to update the

1Here, we denote row-wise stacking by [a, b, c, . . . ].
2Note that any configurations of dynamics models, including non-

trainable simulators and non-differential models, can be used as long as
they performed reasonably well in carrying out given tasks.

mean and standard deviation of the CEM distribution. The
task horizon for CEM updates was set to 10.

2) Transfer learning setup: From the dynamics mod-
els each obtained under different hole orientation φ, we
selected the following eight model combinations as the
sources for transfer learning: φ = −0.6, φ = 0.0, φ =
0.6 (i.e., single source cases, K = 1), and φ ∈
{−0.6, 0.6}, φ ∈ {0.3, 0.3}, φ ∈ {−0.6,−0.3} (K =
2), φ = {−0.6, 0.0,−0.6} (K = 3), and φ =
{−0.6,−0.3, 0.3, 0.6} (K = 4). These source models were
regarded as a black-box function throughout learning target
tasks. The auxiliary model gaux(θaux) had the identical
architecture as that of the source models. We selected the
target environment instances so as not to have the same hole
orientations as those of source instances (e.g., six cases for
K = 1 and five for K = 2). The training was done for 20
episodes and repeated ten times with different random seeds.
Note that we specify state-transition dynamics of source and
target environments concretely in this way for making our
evaluation systematic and reproducible; the specific values
of φ were not when learning target tasks as they were
inaccessible in practice.

3) Evaluation protocol: To evaluate the effectiveness of
transfer via TRANS-AM, we calculated the mean and stan-
dard deviation for the number of the first episodes that
a target task resulted in success. We compared TRANS-
AM with a baseline method that learned the target task
from scratch, where earlier first successes mean effective
transfer. We also measured average success rates up to
e = 5, 10, 15, 20-th episodes to show more detailed statistics
about obtained results.

C. Results

1) Quantitative comparison: As summarized in Table I,
we confirmed that TRANS-AM improved the average first
success episode compared to the baseline that learned the
task from scratch, especially when multiple source models
were used for K ≥ 2 cases. Moreover, the standard deviation
of first success episodes was smaller using TRANS-AM,
indicating its robustness against the choices of source and
target environments. Figure 4 shows the mean and standard
error of episodic returns. Through the use of source dynamics
models, TRANS-AM received much higher returns from
the first episode, which led to earlier success. Note that
we did not confirm the monotonic improvement for the
first-success episode criterion with respect to the number
of source models K, presumably because the number of
aggregation parameters also increased.

2) Ablation study: To investigate the contributions of each
technical component of TRANS-AM in more detail, we
evaluated the following two degraded methods for K = 2:
a) the w/o aux approach that just aggregated two source
models without applying an auxiliary model gaux; and b)
the w/o adaptive agg. approach that simply averaged source
model outputs instead of learning their weights. The results
in Table II clearly show that both the adaptive aggregation
and auxiliary model approaches contribute significantly to



TABLE I
RESULTS OF SIMULATION EXPERIMENTS.

First success e = 5 10 15 20

Baseline 7.98 ± 0.54 0.24 0.54 0.79 0.87

TRANS-AM (K = 1) 6.67 ± 0.31 0.31 0.66 0.80 0.86
(K = 2) 5.98 ± 0.32 0.41 0.69 0.84 0.89
(K = 3) 5.76 ± 0.65 0.41 0.70 0.77 0.85
(K = 4) 6.27 ± 0.72 0.48 0.71 0.87 0.96
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Fig. 4. Averaged episodic returns for the simulation experiment.
Episodic returns are computed and averaged over multiple sessions.

the success of TRANS-AM. Specifically, even though both
degraded methods outperformed the baseline in terms of
achieving the first success episode, their overall success rates,
particularly that of w/o aux, were quite limited.

3) Choice of source dynamics models: Figure 5 shows
the learned weights for different source/target configurations.
Overall, source models with dynamics (i.e., hole orientations)
similar to those of the target instances receive higher weights,
while otherwise increased weights are given to the auxiliary
model to alleviate the mismatch between source and target
dynamics. For example, the bottom row of the figure shows
that the weight assigned to the auxiliary model was much
higher than those for source models, when the target hole
orientation was φ = 0.9 while source orientations were φ =
−0.3 and φ = 0.3.

V. REAL-ROBOT EXPERIMENT

To further investigate the practical impact of TRANS-AM,
we conduct a soft-robotic peg-in-hole task with variable hole
orientations in the real-world environment.

A. Robotic system setup

We used the UR5 robot arm (Universal Robots; see Fig-
ure 6) as a base robotic system. We equipped the robot arm
with a compliant wrist described in [13], a gripper (2F-85,
ROBOTIQ), and force-torque sensor (FT300, ROBOTIQ).
The pose of the gripper was measured using six motion
capture cameras (FLEX13, OptiTrack). A 10-mm diameter
peg made of stainless steel was fixed to the gripper and
inserted to a hole with the depth of 10 mm on the surface.
The tolerance between the peg and the hole was H7/h7.

TABLE II
ABLATION STUDY.

First success e = 5 10 15 20

TRANS-AM (K = 2) 5.98 ± 0.32 0.41 0.69 0.84 0.89

w/o aux 5.34 ± 0.45 0.36 0.48 0.59 0.64
w/o adaptive agg. 7.19 ± 0.35 0.33 0.61 0.78 0.87
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Fig. 5. Learned aggregation weights (K = 2). Horizontal axes indicate
hole orientations of target environment instances. Blue and orange plots
correspond to source dynamics models to be aggregated; green plots shows
the auxiliary dynamics model.

With this system, we designed three different peg-in-hole
tasks with different hole orientations: φ ∈ {−10◦, 0◦, 10◦}
(see also Figure 2). As with the previous simulation ex-
periment, these tasks are characterized by different state-
transition dynamics due to φ.

B. Environment setup

To conduct MBRL, actions of the robot were given by the
3D velocity of the arm tip in the Cartesian coordinate, i.e.,
a = [vX , vY , vZ ]

>, while keeping the orientation of the wrist
constant. Upon receiving action commands at 5 Hz in this
form, we computed the angular velocity of robot joints using
MoveIt [43] to execute the actions. The state was defined as

s = [p>grp, φ
>
grp, p

>
arm, f

>]>, (4)

where pgrp and parm are relative positions of the gripper
and the arm tip with respect to the hole location, f =
[fX , fY , fZ ]

> is a force measurement obtained by the force-
torque sensor. These quantities are normalized by a pre-
defined constant to approximately match their value range.
φgrp is a vector representing gripper orientations as follows:

φgrp = [sinα, cosα, sinβ, cosβ, sin γ, cos γ]>, (5)
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TABLE III
RESULTS OF REAL-ROBOT EXPERIMENTS.

First Success e = 5 10 15 20

Baseline 9.25 ± 5.49 0.2 0.4 0.6 0.8

TRANS-AM (K = 1) 8.20 ± 5.34 0.4 0.6 0.8 1.0
(K = 2) 7.20 ± 3.37 0.4 0.6 1.0 1.0

where α, β, and γ are the roll, pitch, and yaw angle of the
gripper, respectively. Finally, the reward was given by the
gripper position pgrp and the force measurement f :

r = −||pgrp||2 − ||f ||2, (6)

which reaches zero when the peg comes to rest in the hole.

C. Learning and evaluation setup

Following the previous simulation experiment, we trained
ensembles of MLPs as the dynamics models of source
environment instances and used them for MBRL with CEM-
based MPC. Learning rate of the Adam optimizer was set
to 0.01, while the other hyper-parameters were the same as
those in the previous experiment. We conducted TRANS-AM
for 1) transferring from φ = −10◦ to φ = 0◦ (i.e., K = 1)
and from φ ∈ {−10◦, 10◦} to φ = 0◦ (i.e., K = 2).

We continued learning for 20 episodes, where actions were
selected randomly for exploration in the first two episodes.
Each episode consisted of no longer than 100 timesteps
and was completed once the peg was inserted into the
hole successfully. Moreover, we also terminated episodes
if actions with too strong force were about to be executed
or if the grip moved too far away from the hole for safety
reasons. We conducted the above learning sessions five times
with different random seeds and computed an average of the
first successful episodes as well as mean success rates up to
e = 5, 10, 15, 20-th episodes.

D. Results

Table III shows quantitative results. Using source dy-
namics models in TRANS-AM improved the average and
standard deviation of first success episodes compared to the
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Fig. 8. Snapshots of successful peg-in-hole actions. These snapshots
approximately correspond to the moments where the peg was 1) contacted,
2) slided, 3) aligned, and 4) inserted.

baseline method that learned a target task from scratch (from
9.25 ± 5.49 to 7.20 ± 3.37 for K = 2), demonstrating the
effectiveness of the proposed approach. Moreover, TRANS-
AM allowed the robot to achieve 100% success rate at the
15-th episode in K = 2 and at the 20-th episode in K =
1. Figure 7 reports average episodic returns, showing that
TRANS-AM got higher returns in earlier episodes. Finally,
Figure 8 shows some snapshots of a successful session.

VI. CONCLUSION

We presented TRANS-AM, a new approach to model-
based transfer reinforcement learning for different state-
transition dynamics. The key idea is learning to adaptively
aggregate dynamics models obtained in multiple source envi-
ronments to approximate the target state-transition dynamics.
We confirmed the effectiveness of the proposed method on a
challenging soft-robotic peg-in-hole task in both simulation
and real-robot environments.

Effective transfer between different state-transition dynam-
ics would become critical not only when adapting acquired
skills to unseen environmental setups but also when leverag-
ing simulations in sim2real [8], [44] or when learning tasks
in non-stationary environments via continual learning [45],
[46]. Future work will seek to extend model-based transfer
RL via TRANS-AM to work on such challenging scenarios.
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